Decarbonisation portfolio

Introductory slides

2021.10.25 Mitsubishi Power Europe GmbH

Company Overview

* This table is not exhaustive. It lists only companies and products related to hydrogen business

Mitsubishi Power is the thermal power generation company within the MHI Group.

MITSUBISHI HEAVY INDUSTRIES GROUP

Research & Innovation Centre

Jet Engines

(Mitsubishi Heavy Industries Aero Engines, Ltd.)

Offshore Wind Turbines

(MHI Vestas Offshore Wind A/S)

Compressor

(Mitsubishi Heavy Industries Compressor Corp.)

Iron Making

(Primetals Technologies, Ltd.)

Ammonia & Methanol Co-Production Plants CO2 Capture Plants

(Mitsubishi Heavy Industries Engineering, Ltd.)

Gas Carriers

(Mitsubishi Shipbuilding Co., Ltd.)

Aircraft (Mitsubishi Aircraft Corporation)

H-IIA Rocket

Mitsubishi Power, Ltd. All Rights Reserved. 25.02.2021 2

MHI Group Capabilities

The MHI Group has a vast range of technologies and end-to-end solutions for the hydrogen supply chain

Production

Transportation

Demand

Gasification Plants

CO₂ Capture Plants

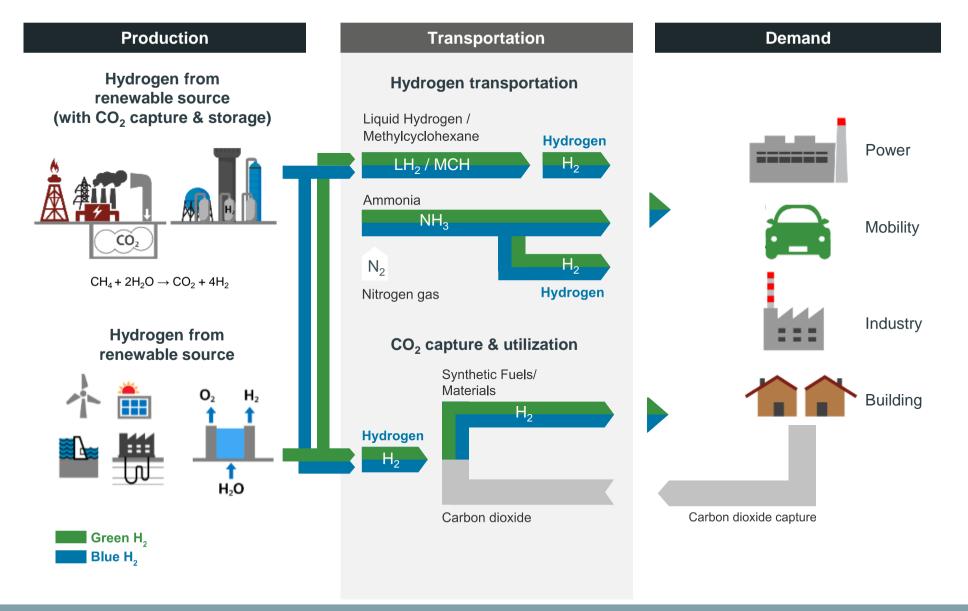
Ammonia & Methanol Coproduction Plants

Hydrogen Gas Turbines

Offshore Wind Turbines

Compressors

Gas Carriers

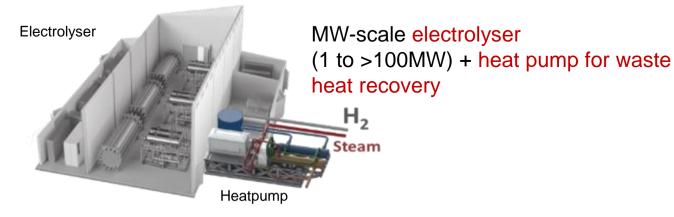

Hybrid Fuel Cell Generators

In addition, MHI Group has products for iron making, forklift, rocket, etc. that can be fueled by hydrogen.

tsubishi Power, Ltd.. All Rights Reserved. 25.02.2021

Overview of Global Hydrogen Supply Chain

Hydrogen in Heat & Power Generation


Solid Oxide Fuel Cell "MEGAMIE" (1 MW)

Gas turbine in combined cycle power plants: up to GW scale

"hydrogen readiness" is a key requirement for near future in EU market

Hydrogen production & Sector Integration

Industrial Scale Carbon Capture

"blue hydrogen" and CCU require large scale CO2 capture

Petra Nova Plant, US 4776 t/day CO2 capture

subishi Power, Ltd.. All Rights Reserved. 25.02.2021

Electrolyser

PRESS INFORMATION

MHI Group Undertakes Investment in HydrogenPro of Norway,
Leading Producer of Advanced Electrolyzers
-- Move Will Contribute to Creation of a Sustainable Society through Hydrogen Energy --

2020-10-14

- Investment will make MHI an industrial partner supporting HydrogenPro's business expansion
- · Strategic collaboration in hydrogen production will strengthen and diversify MHI's hydrogen value chain

Tokyo, October 14, 2020 - Mitsubishi Heavy Industries, Ltd. (MHI) has made a financial investment in HydrogenPro AS of Norway, a company engaged in the development and manufacture of electrolyzers, devices that produce hydrogen by the process of water electrolysis. MHI subscribed to newly issued shares placed by HydrogenPro in an initial public offering (IPO) undertaken to fund expansion of its business operations. MHI already provides various decarbonization technologies that allow for a realistic path towards net-zero and will form the strategic partnership with HydrogenPro to further expand its portfolio and provide green hydrogen production plants to the market going forward.

https://www.mhi.com/news/201014.html

HydrogenPro was established in 2013 based in the Norwegian city of Porsgrunn, Telemark County. The history of water electrolysis technology traces back to 1927, when a fertilizer and heavy water plant employing water electrolysis technology was launched in Telemark by Norsk Hydro, a Norwegian state owned conglomerate. HydrogenPro has already developed a 9 megawatt (MW) class hydrogen production system (production capacity: 4.4 tons/day) adopting water electrolysis technology incorporating a pressurized cells with alkaline electrolyte. Plans are now underway toward achieving a 100 MW class plant (capacity: 48 tons/day).

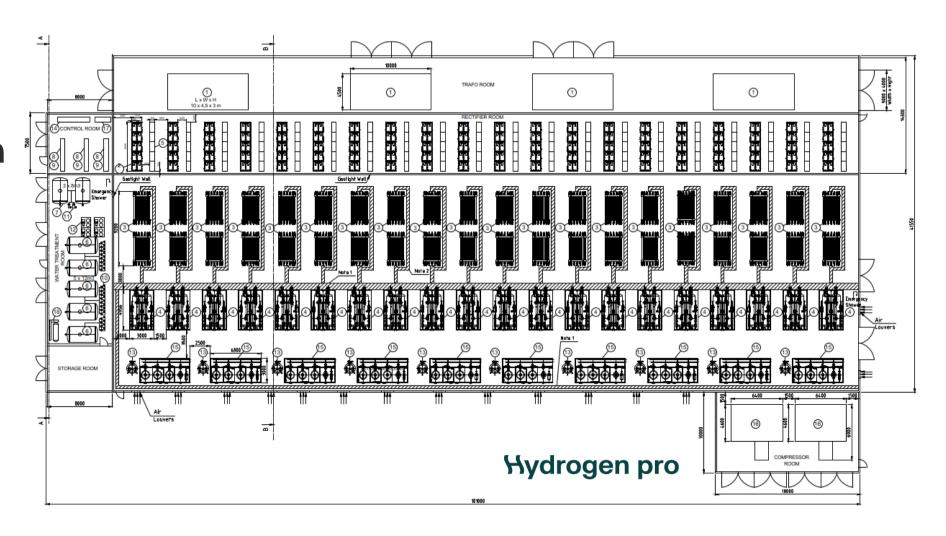
MHI's investment in HydrogenPro provides further financial stability and long-term certainty for projects utilizing green hydrogen to decarbonize various sectors. MHI's investment in HydrogenPro not only signals its confidence in HydrogenPro's offerings, but more importantly, this investment underscores its confidence in the green hydrogen market which will be supported by a multitude of electrolyzer manufacturers and technologies.

Hydrogen pro

Work in progress, Preliminary arrangement 100MW(el) class

Туре	Op Pressure (bar)	Spec. Power (kWh/Nm³)	Turnkey (€/kW)
Pressurized Alkaline Electrolyzer	15-30	< 4,5 (AC)*	~1000 €/kW*

Hydrogen pro


* 100MW scale, basload operation proposed solution, for < 4000 full load hours cost optimisation can be done with the same technology by higher current density, lower efficiency (with today's electrodes) but up to 30% reduced cost

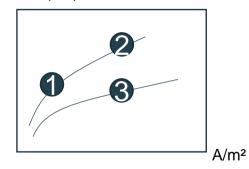
100 MWel scale with traditional technology

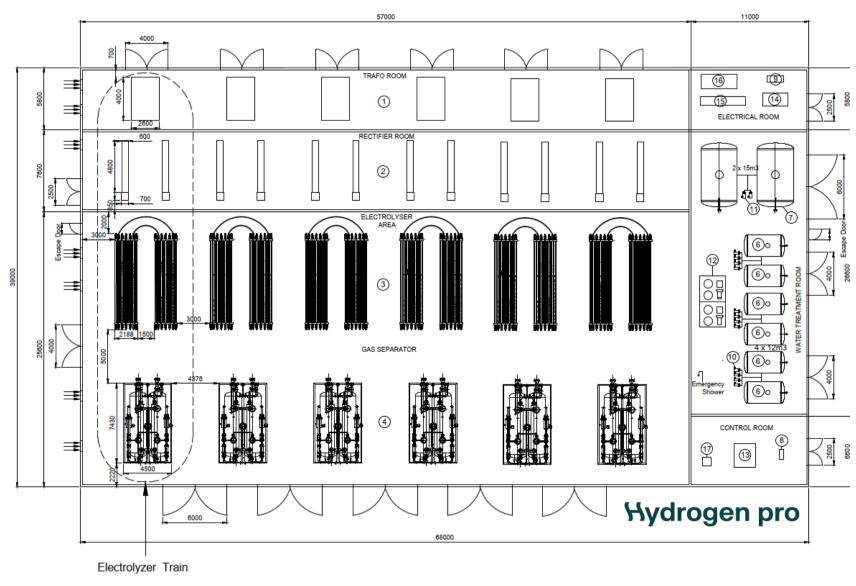
Typical large scale hydrogen production process 2018

100MW plant

51 kWh in total to produce 1 kg H2 (already pressurized to 15 bars)

100 MWel scale with new electrodes, higher current densities and increased stack size

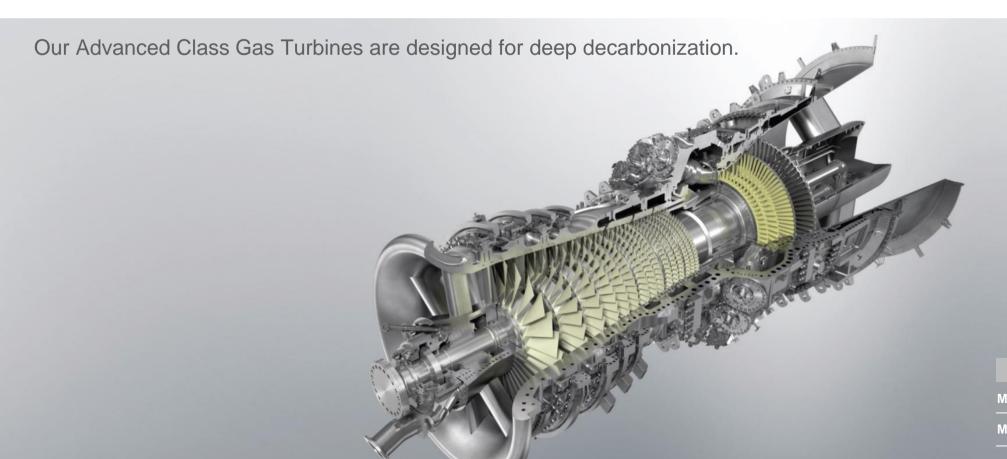



Future plant design large scale production process

Safety, efficiency and flexibility

1 today's stacks
2 today's stacks, higher A/m²
3 today's stacks, higher A/m²,
& new electrodes

kWh/Nm3(AC)



Less than 51 kWh in total to produce 1 kg H2 (already pressurized to 15 bars) (operation mode 3)

Hydrogen fired Gas Turbine

Gas Turbine technology of Mitsubishi Power

M701JAC (50Hz) 563MW / 818MW

M501JAC (60Hz) 425MW / 614MW

High Efficiency

Achieved 64% CC efficiency with

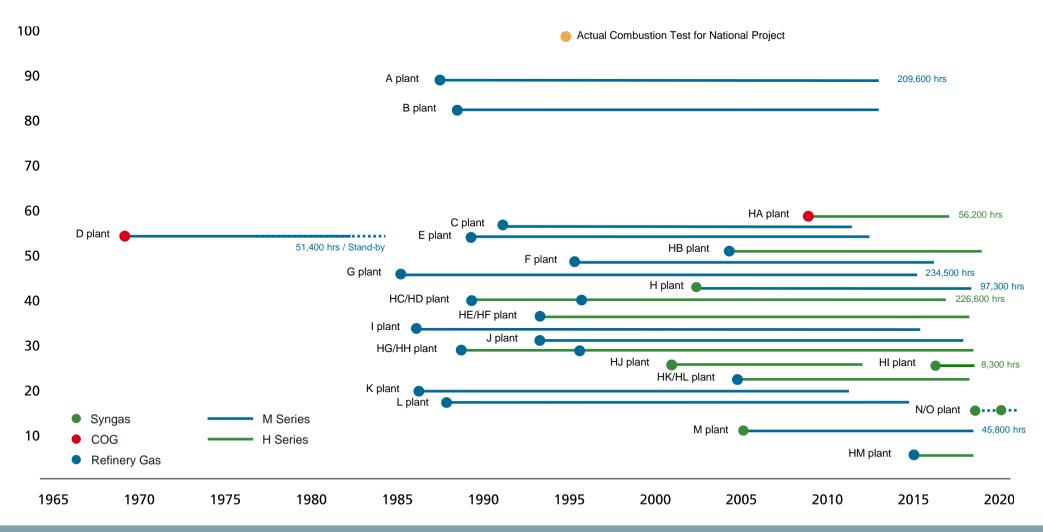
- High pressure compressor (25:1)
- Enhanced air-cooled combustor
- Advanced TBC / Aerodynamics

High Reliability

Achieved 99.5% reliability by

- 60 GT units
- Over 840k operation hours (accumulated hours of all J-class units)

Fuel Flexibility


Gas Turbine can be fueled by

- Fossil fuel (Natural Gas, Oil)
- Clean fuel (Hydrogen)

Hydrogen use in Gas Turbines

Mitsubishi Power has successfully demonstrated more than 3.5 million hours of H₂ co-firing across 29 units since the 1970s.

flitsubishi Power , Ltd.. All Rights Reserved. 25.02.2021 1

Hydrogen use in Gas Turbines

Currently, Mitsubishi Power has 3 types of combustors catering to individual project requirements and hydrogen densities.

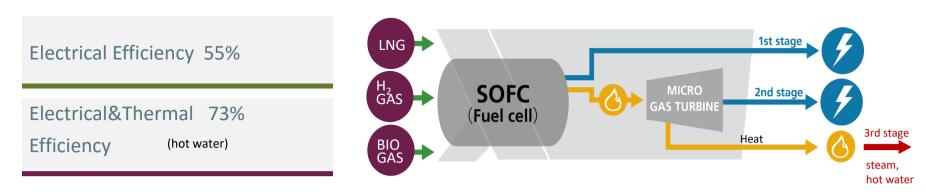
Туре	Low NO _x tech	Turbine inlet temperature (°C)	H ₂ density (volume %)	Sched	lule
Type 1: Diffusion	N ₂ dilution, Water / Steam injection	1200 ~ 1400	100%	1970 Cogen/IGCC	2025 Magnum H ₂ conversion
Type 2: Pre-Mix (DLN)	Dry	1600	30%	1982 DLN	2018 30% co-firing test completed
Type 3: Multi-Cluster (DLN)	Dry	1650	100% (target)		Mar, 2025 Rig test completion target
	(NE	s presentation is based on results obtained DO: <u>N</u> ew <u>E</u> nergy and Industrial Technology .N : Dry Low NOx	from a project commissioned by NEDO to Development Organization)	hat is a government organization in Japan.	(NEDO

Under development

.02.2021

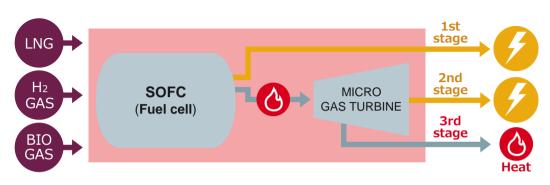
Solid Oxide Fuel Cell

• Mitsubishi Power SOFC System Product Line Up



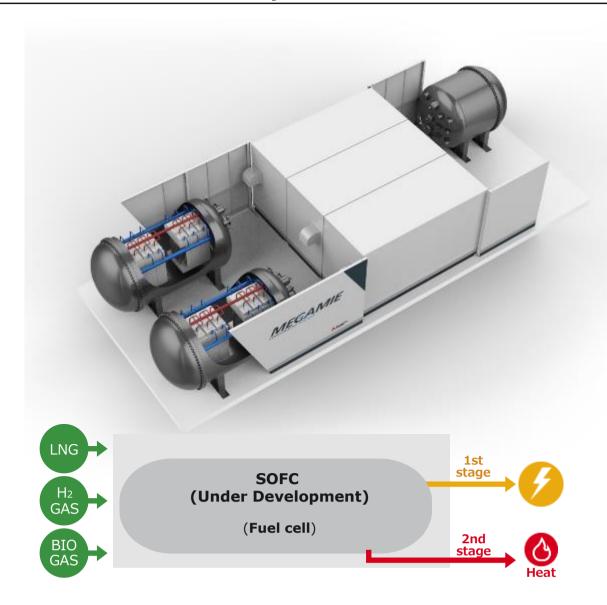
itsubishi Power , Ltd.. All Rights Reserved. 25.02.2021

 Mitsubishi Power-SOFC converts various types of fuel to electricity directly while micro gas turbine utilizes excess fuel from SOFC to generate power.


 Due to multi-stage power generation, our SOFC system has proved to have the highest efficiency in all other Distributed Energy Resources at same capacity range

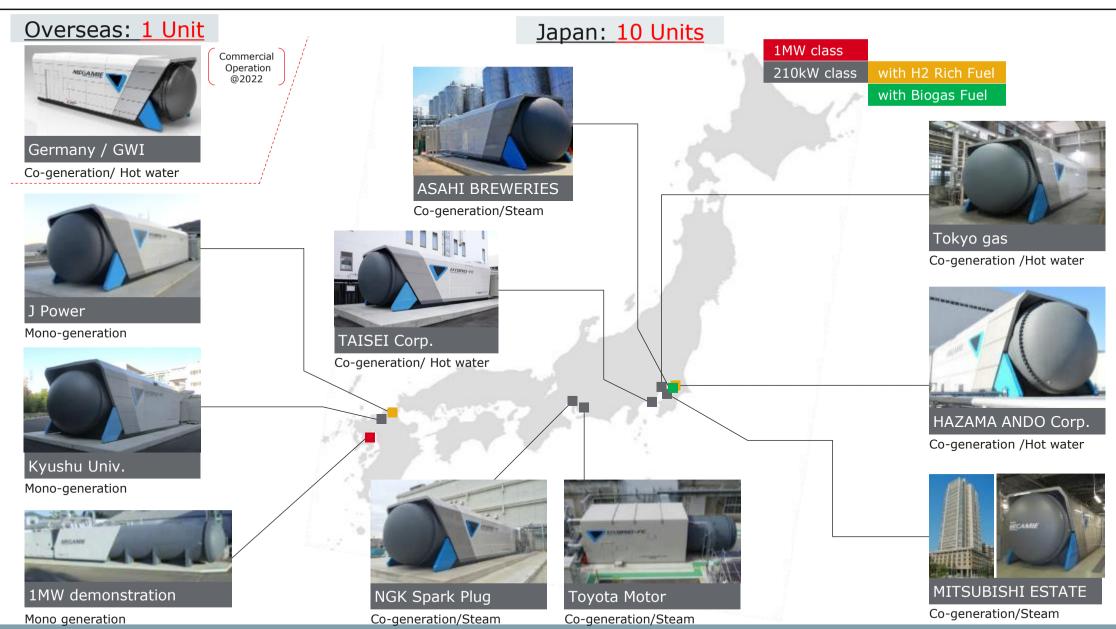
Efficiency Comparison Chart

	PEFC Polymer Electrolyte Fuel Cell	PAFC Phosphoric Acid Fuel Cell	MCFC Molten Carbonate Fuel Cell	Mitsubishi Power- SOFC Solid Oxide Fuel Cell
Temperature (°C)	60~100	150~200	600~650	750~1000
Fuel	Hydrogen	Hydrogen	Natural Gas	Flexible
Efficiency (%LHV)	35~40	38~42	~ 45	~55



Expected Specification	Mitsubishi Power 250kW Class
Electrical Output	220kW class
Electrical Efficiency (LHV)	55 %
Hot water/ Steam Output	86kW/50kW
Total Efficiency (LHV) Electrical + Thermal	73%/65%
Unit Size	W 3.2m x L 12.4 m x H3.3 m
Weight	37ton
Noise Level (Estimated value)	≦65dBA (at 10m far distance)
NOx (16% O2)	Low Concentration (Depends on the fuel)
SO _x emission	Low Concentration (Depends on the fuel)

1MW-Class SOFC specification (Under Development)

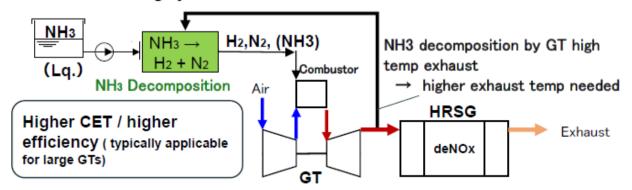


Expected Specification	1MW Class
Electrical Output	1,200kW
Electrical Efficiency (LHV)	Approx. 55%
Hot water/ Steam Output	Detail to be discussed
Total Efficiency (LHV) Electrical + Thermal	Later
Unit Size	W: 8.0 m L: 25 m H: 4.0 m
Weight	Approx. 160 ton
Noise Level (Estimated value)	≦65dBA (at 10m far distance)
NOx (16% O2)	Low Concentration (Depends on the fuel)

Mitsubishi Power SOFC Supply Record

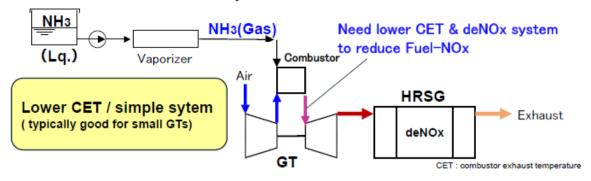
itsubishi Power, Ltd. All Rights Reserved.

Mitsubishi Power Confidential


21

Ammonia use in Gas Turbines and boilers

Development program for ammonia utilisation in GTs


■ Ammonia cracking system

H-25 Series gas turbine

■ Ammonia Direct combustion system

PRESS RELEASE

Mitsubishi Power Commences Development of World's First Ammonia-fired 40MW Class Gas Turbine System

-- Targets to Expand Lineup of Carbon-free Power Generation Options, with Commercialization around 2025 --

2021-03-01

_

Ammonia firing in GT – development programm for H25 (40 MWe class GT) 🙏 MITSUBISHI

Mitsubishi Power is now expanding the line-up of carbon free combustion system, not only hydrogen combustion but also ammonia direct combustion.

start development of ammonia direct combustor

plan to verify the system in 2024

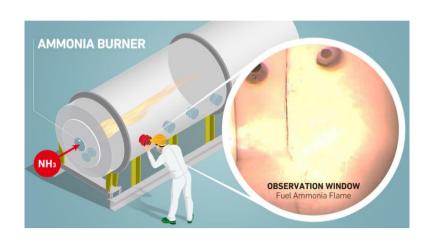
start commercial operation from 2025

Gas Turbine Output: 41.0MW efficiency: 36.2% (SC)

H-25

>80% (Cogeneration)

Sales: 190 GTs


2025 2021 2022 2023 2024 yr Combustor Development System Design Verification Commercial operation

Development Schedule

Development program on ammonia firing in boilers

- Development program for 100% ammonia firing in retrofitted industrial boilers ongoing. Pilot tests carried out
- Ammonia co-firing already feasible in existing boilers after retrofit

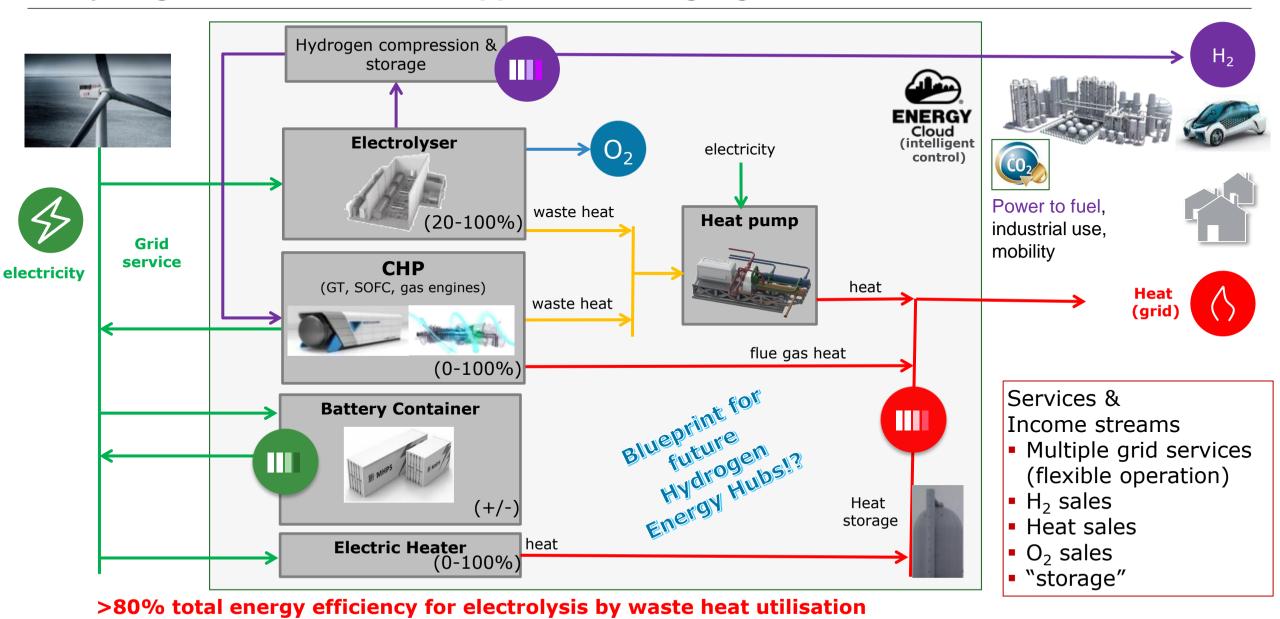
Benefits of Ammonia co-firing/ 100% firing

- Reduced / zero CO₂ emissions
- Higher operating flexibility (better load change rate)

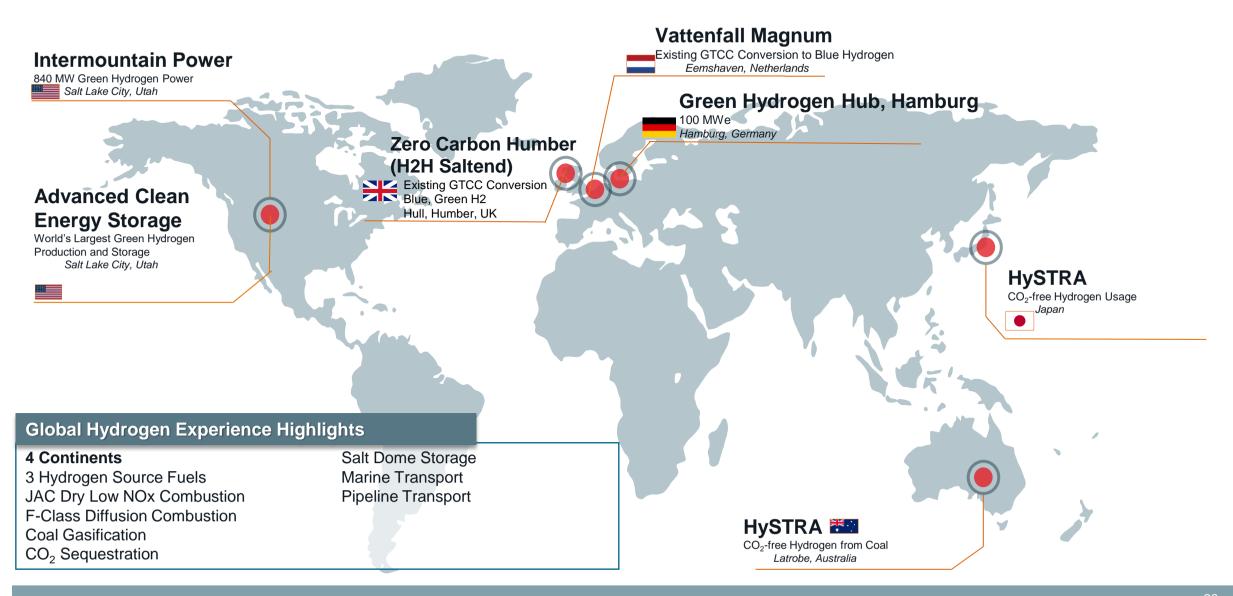
PRESS RELEASE

Mitsubishi Power to Develop Ammonia Combustion Systems for Thermal Power Plant Boilers -- To achieve optimal combustion characteristics for mixed and single fuel operations --

2021-08-26


Integrated Projects (Examples)

Mitsubishi Power, Ltd.


Hydrogen for multi-sectoral approach, storage, grid services

Mitsubishi Power Hydrogen approach: Learning by doing

Aitsubishi Power , Ltd.. All Rights Reserved. 25.02.2021 28

Zero Carbon Humber (UK)

Feasibility study bid under UK funding.

30% H2 co-firing in Saltend GTCC is the starting point of the project.

Turbine Model M701F

Power Output 1202 MW (3 GTCC)

Location Hull, Humber UK

Zero Carbon Humber: a partnership to build the world's first net zero industrial cluster and decarbonise the North of England

30% H2 co-firing in Saltend GTCC by using Blue H2, named H2H Saltend is the starting point of the project.

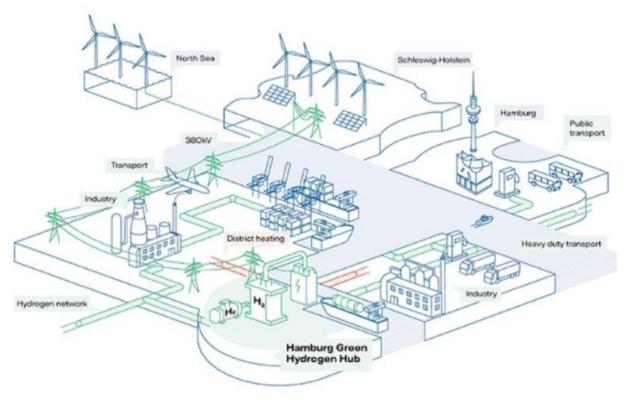
> BRITISH STEEL

centrica

drax


Source and courtesy Equinar

Hamburg Green Hydrogen Hub



Shell, Mitsubishi and Vattenfall partner on Hamburg hydrogen project

Pamela Largue - 1.26.2021

Shell, Mitsubishi Heavy Industries (MHI), Vattenfall and municipal company Wärme Hamburg are exploring a plan to jointly produce hydrogen from wind and solar power at the Hamburg-Moorburg power plant site and utilise it in its vicinity.

Targets

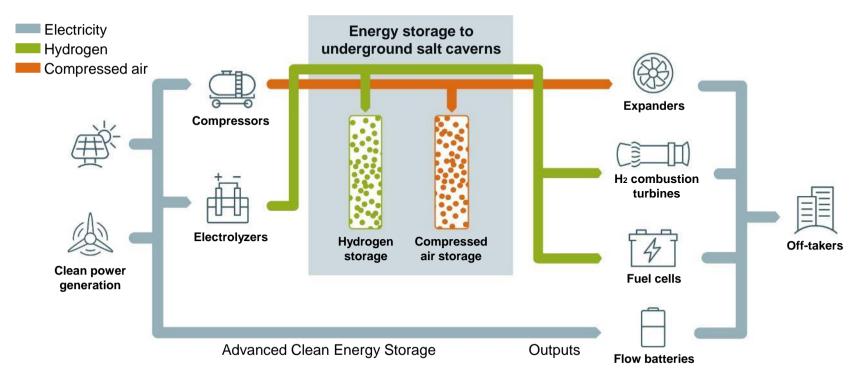
- 100MW(el) electrolyser as first stage, 11500Nm³/h H2 transport & storage via pipeline to users (85bar)
- Supply to industrial customers, transport
- Later extension to X*100MW
- Site: Moorburg PP, Hamburg

PMitsubishi Power, Ltd.

Advanced Clean Energy Storage Project

(United States of America)

The Advanced Clean Energy Storage Project is the world's largest renewable energy storage project.


Storage Capacity 150GWh

Location Utah, USA

This project was launched in May 2019 by Mitsubishi Power, Magnum Development and the Governor of Utah.

This project using storage technology such as renewable hydrogen (Green H2), compressed air, large scale flow batteries and solid oxide fuel cells.

Green H2 and/or compressed air is planned to be stored in underground salt caverns in Utah.

Intermountain Power Plant (United States of America)

Intermountain Power Agency orders Mitsubishi Power JAC Gas Turbine Technology for Renewable-Hydrogen Energy Hub.

This utility-scale project shows a path to 100% renewable power no later than

2045.

Gas Turbine Model	M501JAC
Power Output	840 MW (by 2 CCGT)
Location	Utah, USA

This transition will start in 2025 using a mix of 30% hydrogen and 70% natural gas fuel.

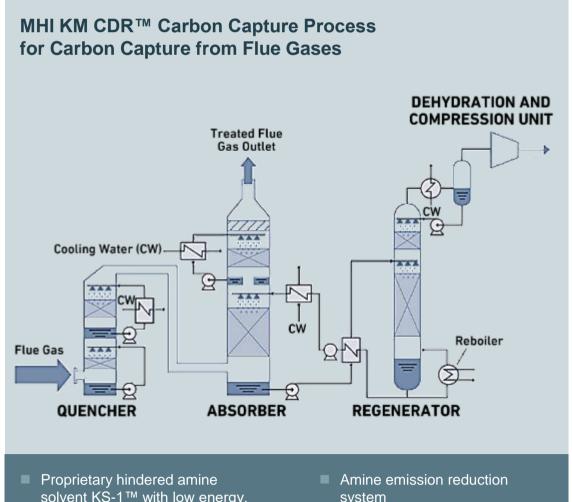
This fuel mixture will reduce CO₂ emissions by more than 75% compared to the retiring coal-fired technology.

Between 2025 and 2045, the hydrogen capability will be systematically increased to 100% renewable hydrogen, enabling carbon-free utility-scale power generation.

Power plant is connected to the Los Angeles power grid by an existing high voltage direct-current (HVDC) transmission line.

tsubishi Power, Ltd.. All Rights Reserved. 25.02.2021

Carbon Capture, CCU


CO2 capture technology of MHI

The world's most energy efficient post combustion process was commercialized 1999 for various flue gas sources (natural gas, heavy oil, biomass, coal) to a variety of usages such as Urea, Methanol or other CO₂ use cases.

- Carbon Capture from Flue Gases with 3% of CO₂ or more
- Purity of $CO_2 > 99.9\%$
- Carbon capture rate over 90%, up to 99.5% possible

- Solvent KS-1[™] is negligible corrosive with low consumption
- Over a dozen commercial references

- solvent KS-1™ with low energy, low solvent degradation
- High energy efficiency system

- system
- Automatic Load Adjustment (ALAC) System

CO₂ scrubbing - sound reference - key equipment also for PtX (e-fuels)

World's leading large scale post – combustion CO₂ capture technology licensor

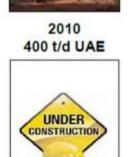
13 plants in operation and 1 under construction, from a variety of natural gas, heavy oil and coal flue gas sources

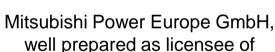
1999 210 t/d Malaysia

2005 330 t/d Japan

2006 450 t/d India

2006 450 t/d India




2009 450 t/d India

2009 450 t/d Bahrain

European Market started

well prepared as licensee of MHI-ENG Technology for present tenders

2010 240 t/d Vietnam

2011 340 t/d Pakistan

2012 450 t/d India

2014 500 t/d Qatar

2016 4,776 t/d U.S.A. largest ever built

2017 283 t/d Japan

2021 1200 t/d Russia

Mitsubishi Power, Ltd.

CO₂ Capture and Utilisation (CCU)

CO₂ - Scrubber Reference

Petra Nova: Texas – USA World biggest CO₂-scrubber

Start-up: end 2016 4.776 t/day CO₂ production (flue gas stream of 240 MW hard coal) 90% capture rate

Utilisation: Enhanced Oil Recovery (EOR)

Flue gas slip stream scrubbing of Boiler #8 (654 MW) W.A. Parish Power Plant / USA

MHI is No. 1 in the world with over 15 years of experiences having more than 10 reference plants for CO₂ scrubbing (PCC technology) in operation

@Mitsubishi Power, Ltd.

Multi-sectoral Approach: H₂ Conversion to MeOH and DME

Strong engagement by Mitsubishi Power Europe GmbH* in EU funded multi-party demonstration plants, projects successful and almost completed

> MefCO2: EU SPIRE2 - Horizon 2020 Grand Agreement no.: 637016

- ☐ 9 Project partners
- MHPS-EDE as system integrator
- Production of 1 t of Methanol per day

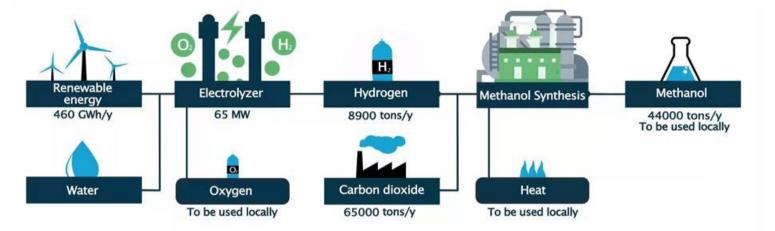
Project Volume: 11 Mil. EUR

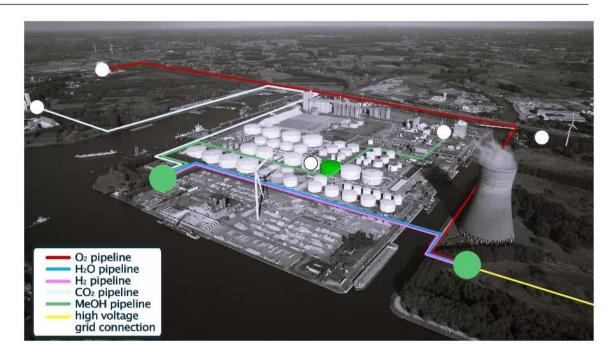
Horizon 2020 European Union Funding for Research & Innovation

- 31 partners from 5 EU countries working on 6 topics
- ☐ WP CO₂ utilization: RWE, AsahiKasei, FEV, FZ Jülich, MHPS-EDE, RWTH; associated partner: BOSCH
- ☐ Production of 48 kg of DME mixture per day
- ☐ Project Volume: 23 Mil. EUR
- Construction to be completed

*former MHPS-EDE

65MW(el) Synthetic methanol

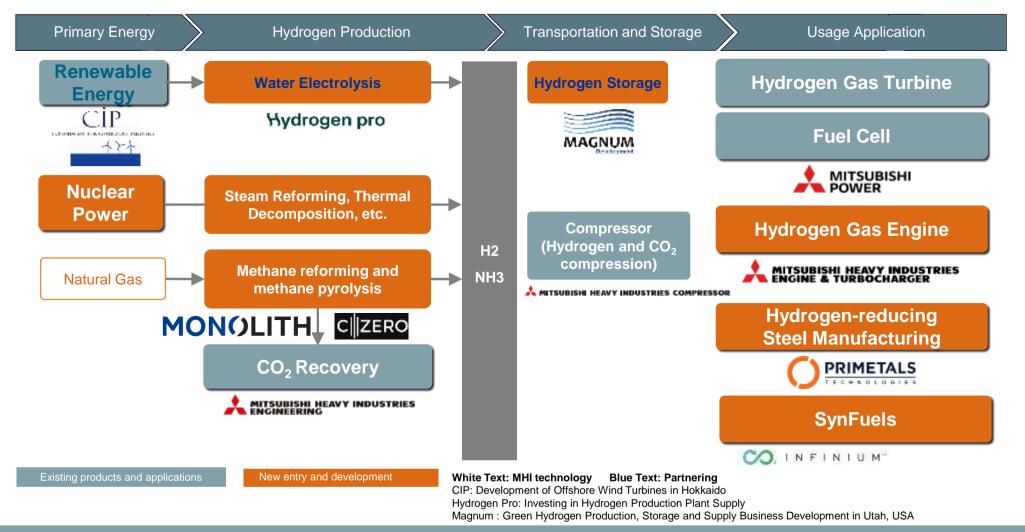




https://northccuhub.eu/north-c-methanol/

Harbour of Gent/BE Electrolyser in Rodenhuize PP Synthesis in harbour area CO₂ source options

- From nearby ammonia plant
- From bioethanol
- From AM steel mill


®Mitsubishi Power, Ltd.

Summary

MHI Group Hydrogen Portfolio Capabilities across the Hydrogen Value Chain

- Contributing to the establishment of infrastructure and cost reduction through the provision of technologies, products, and services
- Creating a value chain from hydrogen production to utilization by our unique technologies and active cooperation with partners
- Transition towards utilization of ammonia

MOVE THE WORLD FORW>RD